M1.C

M2.A

M3.C

M4.A

$$
\begin{gathered}
\text { M5.(a) } t=\sqrt{\frac{2 s}{g}} \text { or } 4.5=\frac{1}{2} \times 9.81 \times t^{2} \checkmark \\
t=0.96 \mathrm{~s} \checkmark
\end{gathered}
$$

(b) Field strength $=186000 \mathrm{~V} \mathrm{~m}^{-1} \checkmark$

$$
\text { Acceleration }=E q / m
$$

$$
\text { or } 186000 \times 1.2 \times 10^{-6} \quad \checkmark
$$

$$
0.22 \mathrm{~m} \mathrm{~s}^{-2} \checkmark
$$

(c) $\quad 0.10(3) \mathrm{m}($ allow ecf from (i)) \downarrow
(d) Force on a particle $=m g$ and
acceleration $=F / m$ so always $=g \checkmark$
Time to fall (given distance) depends (only) on the distance and acceleration \checkmark

OR:
$g=G M / r^{2} \checkmark$
Time to fall $=\sqrt{ } 2 \mathrm{~s} / \mathrm{g}$
so no m in equations to determine time to fall \checkmark
(e) Mass is not constant since particle mass will vary \checkmark

Charge on a particle is not constant \checkmark
Acceleration $=E q / m$ or $(V / d)(q / m)$ or $V q / d m \swarrow$
E or V / d constant but charge and mass are 'random' variables so q / m will vary (or unlikely to be the same) \checkmark

M6.D

M7.B

M8.D

M9.D

M10.A

M11.C

M12.B

M13.C

M14.A

M15.(a) (i) force acts towards left or in opposite direction to field lines \checkmark because ion (or electron) has negative charge
($:$ experiences force in opposite direction to field)
Mark sequentially.
Essential to refer to negative charge (or force on + charge is to right) for $2^{n d}$ mark.
(ii) (use of $W=F$ s gives) force $F=\frac{4.0 \times 10^{-16}}{63 \times 10^{-3}} \checkmark$

$$
=6.3(5) \times 10^{-15}(N)
$$

If mass of ion m is used correctly using algebra with $F=$ ma, allow both marks (since m will cancel). If numerical value for m is used, max 1.
(iii) electric field strength $E\left(=\frac{F}{Q}\right)=\frac{6.35 \times 10^{-15}}{3 \times 1.6 \times 10^{-19}}=1.3(2) \checkmark 10^{4}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$

$$
\begin{aligned}
& \text { [or } \quad \Delta V\left(=\frac{\Delta W}{Q}\right)=\frac{4.0 \times 10^{-16}}{3 \times 1.60 \times 10^{-19}} \quad(833 \mathrm{~V}) \\
& E\left(=\frac{\Delta V}{d}\right)=\frac{833}{63 \times 10^{-3}}=1.3(2) \checkmark 10^{4}\left(\mathrm{Vm}^{-1}\right) \checkmark \text {] }
\end{aligned}
$$

Allow ECF from wrong F value in (ii).
(b) (i) (vertically) downwards on diagram \checkmark reference to Fleming's LH rule or equivalent statement

Mark sequentially. $1^{\text {st }}$ point: allow "into the page".
(ii) number of free electrons in wire $=A \times I \times$ number density $=5.1 \times 10^{-6} \times 95 \times 10^{-3} \times 8.4 \times 10^{28}=4.1(4.07) \times 10^{22} \checkmark$

Provided it is shown correctly to at least 2SF, final answer alone is sufficient for the mark. (Otherwise working is mandatory).
(iii) $B\left(=\frac{F}{Q v}\right)=\frac{1.4 \times 10^{-25}}{1.60 \times 10^{-19} \times 5.5 \times 10^{-6}} \quad \checkmark=0.16(0.159)$ (T) \checkmark

$$
\left[\operatorname{or} B\left(=\frac{F}{I l}\right)=\frac{1.4 \times 10^{-25} \times 4.07 \times 10^{22}}{0.38 \times 95 \times 10^{-3}} \quad \checkmark=0.16(0.158)(\mathrm{T}) \checkmark\right. \text {] }
$$

In $2^{\text {nd }}$ method allow ECF from wrong number value in (ii).

M16.B

M18.D

M19.(a) (i) required pd $\left(=2.5 \times 10^{6} \times 12 \times 10^{-3}\right)=3.0(0) \times 10^{4}(\mathrm{~V})$
(ii) charge required $Q(=C V)=3.7 \times 10^{-12} \times 3.00 \times 10^{4} \checkmark$

$$
\left(=1.11 \times 10^{-7} \mathrm{C}\right)
$$

Allow ECF from incorrect V from (a)(i).
time taken $t\left(=\frac{Q}{I}\right)=\frac{1.11 \times 10^{-7}}{3.2 \times 10^{-8}}=3.5(3.47)$ (s)
(b) (i) time increases
(larger C means) more charge required (to reach breakdown pd)
Mark sequentially i.e. no explanation mark if effect is
wrong.
or $t=\frac{C V}{I}$ or time \propto capacitance \checkmark
(ii) spark is brighter (or lasts for a longer time) more energy (or charge) is stored or current is larger Mark sequentially.
or spark has more energy

